GPU-based computation of discrete periodic centroidal Voronoi tessellation in hyperbolic space

نویسندگان

  • Liang Shuai
  • Xiaohu Guo
  • Miao Jin
چکیده

Periodic centroidal Voronoi tessellation (CVT) in hyperbolic space provides a nice theoretical framework for computing the constrained CVT on high-genus (genus > 1) surfaces. This paper addresses two computational issues related to such hyperbolic CVT framework: (1) efficient reduction of unnecessary site copies in neighbor domains on the universal covering space, based on two special rules; (2) GPU-based parallel algorithms to compute a discrete version of the hyperbolic CVT. Our experiments show that with the dramatically reduced number of unnecessary site copies in neighbor domains and the GPU-based parallel algorithms, we significantly speed up the computation of CVT for high-genus surfaces. The proposed discrete hyperbolic CVT guarantees to converge and produces high-quality results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyperbolic Delaunay triangulations and Voronoi diagrams made practical

We show how to compute Delaunay triangulations and Voronoi diagrams of a set of points in hyperbolic space in a very simple way. While the algorithm follows from [7], we elaborate on arithmetic issues, observing that only rational computations are needed. This allows an exact and efficient implementation.

متن کامل

Centroidal Voronoi tessellation in universal covering space of manifold surfaces

The centroidal Voronoi tessellation (CVT) has found versatile applications in geometric modeling, computer graphics, and visualization, etc. In this paper, we first extend the concept of CVT from Euclidean space to spherical space and hyperbolic space, and then combine all of them into a unified framework – the CVT in universal covering space. The novel spherical and hyperbolic CVT energy funct...

متن کامل

Lloyd's Algorithm on GPU

The Centroidal Voronoi Diagram (CVD) is a very versatile structure, well studied in Computational Geometry. It is used as the basis for a number of applications. This paper presents a deterministic algorithm, entirely computed using graphics hardware resources, based on Lloyd’s Method for computing CVDs. While the computation of the ordinary Voronoi diagram on GPU is a well explored topic, its ...

متن کامل

Parallel L-BFGS-B algorithm on GPU

Due to the rapid advance of general-purpose graphics processing unit (GPU), it is an active research topic to study performance improvement of non-linear optimization with parallel implementation on GPU, as attested by the much research on parallel implementation of relatively simple optimization methods, such as the conjugate gradient method. We study in this context the L-BFGS-B method, or th...

متن کامل

Improving Accuracy in a Robust Algorithm for Three-Dimensional Voronoi Diagrams

This paper describes extensions to a previous algorithm that robustly builds three-dimensional Voronoi diagrams in the presence of inexact numerical computations. The extensions improve the algorithm's accuracy, making its results more nearly represent the proximity properties of an ideal Voronoi diagram. In empirical tests, these extensions have improved accuracy by more than eight orders of m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computer-Aided Design

دوره 45  شماره 

صفحات  -

تاریخ انتشار 2013